Контроль сварных швов в труднодоступных местах. Методы контроля

Автор

Контроль сварных швов в труднодоступных местах

image021Работаю сварщиком на стройке. Опыт работы небольшой. Варю, в основном, трубы сантехнических систем. Довольно часто стыкую трубы, когда шов почти вплотную к стене. Приходится изощряться, изгибать электрод.
Но, это ещё полбеды. Голову-то между трубой и стеной не засунешь, чтобы посмотреть, как заварилось. Подскажите, пожалуйста, опытные сварщики, как вы из положения выходите в этом случае? Заранее благодарен!

Есть такая сложность в работе сварщиков. Особенно, при монтаже трубопроводов на подводных лодках. Вот там и стали впервые применять женское круглое зеркальце для контроля сварных соединений в труднодоступных местах. Но, во-первых, не всегда есть возможность засунуть руку с зеркальцем между стеной и деталью, а во-вторых, иногда и варить необходимо с зеркалом, а рук не хватает! В одной держатель с электродом, в другой маска сварочная. Вот тут-то на помощь и приходит инспекционное зеркало, которое можно предварительно закрепить в удобном положении, и через него наблюдать и контролировать процесс сварки. И руки свободны, и зона доступна!

Методы контроля сварных швов

kontrol-fotoОтветственные конструкции контролируют на отсутствие дефектов. Но не всегда можно различить дефекты невооруженным глазом или при некотором увеличении. Происходит это по причине того, что они могут сливаться с общим рельефом в силу своих небольших размеров или попросту находиться внутри шва, не выходя на поверхность. Поэтому применяют разные неразрушающие методы контроля (НМК), призванные проявить все существующие изъяны.
Качество сварного шва сказывается на работе деталей и конструкций: ухудшаются их прочностные свойства, что может привести к разрушению в процессе работы. Системы, испытывающие постоянное или переменное давление, могут дать течь из-за микропор, микротрещин и т.д. Вот почему на контрольную операцию отводится больше времени, внимания и затрат, чем на саму сварку.

Визуальный контроль

Не смотря на то, что он находится в ряду одних из самых неэффективных и несовершенных методов, тем не менее, он наиболее простой и распространенный. Контролируют ширину шва и его катет, если речь идет об угловом соединении, основные размеры; измеряют радиальные биения, поводки (коробления). Так же смотрят отсутствие пор, усадочных раковин, трещин, непроваров, подрезов, а в случае пайки еще и непропаев (читайте «Распространенные дефекты сварных швов»).

Шов должен быть равномерный, чистый, без видимых дефектов. Если обнаружено что-то, что не соответствует вашим критериям или требованиям технической или конструкторской документации, это всегда можно исправить подваркой проблемных мест, пока еще не произведена окончательная механическая обработка.

 Проверка на герметичность

Если конструкция узла позволяет провести контроль качества шва на герметичность, это можно сделать несколькими способами:
1. Керосин имеет свойство проникать в мельчайшие поры и трещины. Например, если вы приварили днище к цилиндру – налейте в него немного керосина, за счет капиллярного эффекта даже наличие невидимых глазу дефектов станет очевидным — керосин просочится и проявится на наружной стороне стакана.
2. Если кроме герметичности нужно проверить узел еще и на прочность, керосин или другую рабочую жидкость подают с давлением в несколько раз превышающим рабочее. Контролируют отсутствие жидкости на сварных швах визуально или с помощью индикаторной бумаги.
3. Герметичность также можно проверить, подав в узел сжатый воздух давлением в несколько атмосфер. Такой узел опускают в дистиллированную воду и контролируют отсутствие пузырьков воздуха на его поверхностях.

Ультразвуковой контроль сварных соединений

Осуществляют при помощи УЗВ-дефектоскопов. Определяют данным методом скрытые дефекты, такие как трещины, непровары, включения шлака, засоры. Контролировать можно результаты аргонодуговой, электросварки, контактной, электронно-лучевой, диффузионной и других видов сварок.
Суть метода заключается в том, что посылаемый через металлическую деталь с помощью датчика ультразвук проходит ее насквозь, если не встречает препятствий. Как только появляется «полость», например, непроварившийся участок, звук отражается от него и попадает обратно в прибор, который и сигнализирует о проблеме.

Магнитопорошковый контроль (МК)

Этот метод отбраковки также относится к НМК. В его основе лежит использование магнитных полей, если выражаться более точно, магнитных полей рассеяния, которые возбуждаются над участком расположения дефектов при местном намагничивании деталей. В качестве состава для индикации наносят ферромагнитный материал, размеленный в порошок (контролируемый материал тоже должен обладать ферромагнитной природой). С помощью МК выявляют дефекты лежащие или выходящие на поверхность, а также находящиеся под поверхностью. Подповерхностные дефекты могут залегать на существенной глубине, интенсивность индикации напрямую зависит от размера дефекта. Чем он больше, тем выше величина магнитного рассеяния.
Дефектации подлежат литейные детали, полученные сваркой (швы), с эксплуатации. Выявляют трещины различной природы образования, волосовины (пузырьки воздуха, вытягивающиеся в «линии» в процессе проката металла), непровары и другие дефекты, величиной от 0,001 мм.
МК имеет следующие достоинства:
• Приборы МК высокочувствительны;
• Простота технологии проверки деталей различных геометрических размеров и форм;
• Некоторые элементы возможно контролировать не снимая с металлоконструкции;
• Высокая скорость дефектации.
Технологический процесс МК:
• Подготовительные работы. Детали должны быть чистыми, промыты в нефрасе, ацетоне. оптимальная шероховатость Rа2,5 (смотрите ГОСТ 21105-87);
• Намагничивание;
• Погружение в ванну с индикаторной суспензией или нанесение ее ( в зависимости от типа используемых устройств: стационарное, переносное);
• Визуальный контроль полученной «картины» и разбраковка.

Метод цветной дефектоскопии

Второе название – капиллярная дефектоскопия. Метод очень надежный. Основан на использовании свойства состава индикаторной жидкости (пенетранта) проникать в мельчайшие трещины, поры, царапины, которые в результате последующей обработки можно проявить. Таким образом, можно сделать видимыми дефекты, которые выходят на поверхность и не могут быть обнаружены ни с помощью визуального осмотра невооруженным глазом, ни даже при использовании микроскопов с большой кратностью окуляра из-за того, что они по цвету практически неотличимы от фона рассматриваемой сварной детали.
Для примера, с помощью «капиллярки» можно выявить трещину с шириной развития менее 1 мкм.
После проведения  такого контроля все изъяны, выходящие на поверхность или имеющие раскрытие, будут подкрашены («подсвечены») в красный цвет, который хорошо выделяется на сером фоне металла. Проверке можно подвергать различные баки, трубы, металлические конструкции, изготовленные из стали и алюминия.
Однако метод требует присутствия обученного персонала и спецоборудования, что делает затруднительным его применение в кустарном производстве.

 Радиографический контроль

welding

На снимке видны поры в сварном шве

Осуществляют по ГОСТ 7512-82 (pdf) «Контроль неразрушающий» и основан на способности различных материалов поглощать рентгеновские волны с различной степенью интенсивности. Например, металл поглощает волны больше, чем включения шлака. Соответственно на фотоснимке будут видны засоры и несплошности в металлической детали, они будут отражены более светлыми областями. На практике метод показал высокую эффективность определения наличия вольфрамовых включений, засоров, пор и пористости, усадочных раковин, трещин и шлака, непроваров и т.д. и т.п.
Кроме волн Ренгена используют изотопы иридия, селена, цезия и кобальта.
С помощью метода контролируют трубопроводы, чаще всего магистральные газовые, нефтяные и технологического назначения по ОСТ 102-51-85 . Так же есть смысл проверять, таким образом, металлические конструкции и различное производственное оборудование.
Способ не применяют, если:
• Если направление развития дефекта не соответствует направлению просвечивания
• Если размеры трещин, несплошностей и включений слишком малы для чувствительности рентгеном
Вывод: рентгенографическое исследование эффективно в рамках своей области применения, при расположении дефектов, например под острым углом, затрудняется их идентификация. Но если применять его в комплексе с ультразвуковой проверкой, надежность контроля увеличивается.

Добавить комментарий